

D3.2
AsTeRICS Plugin Set

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

2

PROJECT DOCUMENTATION SHEET

Project Acronym Easy Reading

Project Full Title Easy Reading

Grant Agreement 780529

Call Identifier H2020-ICT-2016-2017

Topic ICT-23-2017

Funding Scheme RIA (Research and Innovation action)

Project Duration 30 months (January 2018 – June 2020)

Project Officer

Michael Busch, European Commission
Directorate-General for Communications Networks, Content and
Technology, Unit &-3, L-2557 Luxembourg, +352.4301.38082

Coordinator Universität Linz (JKU), Austria

Consortium partners

Kompetenznetzwerk (KI-I), Austria
Technische Universität Dortmund (TUDO), Germany
In der Gemeinde Leben gGmbH (IGL), Germany
FUNKA Nu AB (FUNKA), Sweden
Texthelp Ltd (TEXTHELP), United Kingdom
VÄSTRA GÖTALANDS LÄNS LANDSTING (DART), Sweden
GEIE ERCIM (ERCIM), France
AHTENA I.C.T. Ltd (ATH), Israel

Website https://www.easyreading.eu

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

3

DELIVERABLE DOCUMENTATION SHEET

Number Deliverable D3.2

Title AsTeRICS Plugin Set

Related WP WP3

Related Task T3.2

Lead Beneficiary KI-I

Author(s) Barbara Wakolbinger, Stefan Parker

Contributor(s) Gerhard Nussbaum

Reviewers Alan McCaig

Nature Other

Dissemination level Public

Due Date 30/06/2019

Submission date 25/06/2019

Status Final Version

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

4

QUALITY CONTROL ASSESSMENT SHEET

Issue Date Comment Author

1 17/06/19 Initial review Alan McCaig

2 19/06/19 Final review Alan McCaig

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

5

DISCLAIMER

The opinion stated in this report reflects the opinion of the authors and not the opinion of the
European Commission.

All intellectual property rights are owned by the Easy Reading consortium members and are
protected by the applicable laws. Except where otherwise specified, all document contents are:
“©Easy Reading Project - All rights reserved”. Reproduction is not authorised without prior written
agreement.

The commercial use of any information contained in this document may require a license from the
owner of that information. All Easy Reading consortium members are also committed to publish
accurate and up to date information and take the greatest care to do so. However, the Easy Reading
consortium members cannot accept liability for any inaccuracies or omissions nor do they accept
liability for any direct, indirect, special, consequential or other losses or damages of any kind arising
out of the use of this information.

ACKNOWLEDGEMENT

This document is a deliverable of the Easy Reading project, which has received funding from the
European Union’s Horizon 2020 Programme for Information and Communication Technologies under
Grant Agreement (GA) Nb #780529.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

6

Executive Summary
D3.2 describes a set of needed additional plugins for the AsTeRICS system, which will help to develop
an AsTeRICS model that can draw conclusions on a user’s cognitive stress level, based on various
sensor readings.

The HRVRmssdFromRR plugin calculates Heart Rate Variation Root Mean Square of Successive
Differences, which can indicate cognitive stress. The BlinkChangeDetector takes the eye’s current
state (open or closed) as input and calculates changes in blink duration and rate, both of which tend
to change with cognitive load. Apart from these data acquisition and processing plugins, the other
described plugins are “helper-plugins” needed for reasoner development and user data collection for
development. The StringExtractor extracts a substring from a given input string based on start and
end delimiter strings. The TimestampWriter stores the time that has passed since the start of the
model or the last reset. Outputs are based on the local system’s time zone, which is also the base of
the DateToDouble plugin, which converts a date string to a Unix epoch timestamp. Finally, the
JsonParser is also a helper plugin that is needed because the communication within the Easy Reading
system will be realised through passing JSON objects.

The present document is a deliverable of the Easy Reading project which is funded by the European
Union’s Horizon 2020 Programme und Grant Agreement #780529.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

7

Table of Content
Executive Summary 6

Introduction 9

Descriptions of new Plugins 10

HRVRmssdFromRR 10

Output Ports 10

Input Ports 10

Event Listeners 10

Event Triggers 11

Properties 11

Prospective use in Easy Reading 11

BlinkChangeDetector 11

Basic Trend Detection Algorithm 12

Output Ports 13

Input Ports 13

Event Listeners 13

Event Triggers 13

Properties 14

Used for blink rate trend and blink duration trend detection 14

Used for blink duration trend detection only 14

Used for blink rate trend detection only 15

Prospective use in Easy Reading 15

StringExtractor 16

Output Ports 16

Input Ports 16

Event Listeners 16

Event Triggers 16

Properties 16

Prospective use in Easy Reading 16

TimestampWriter 17

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

8

Output Ports 17

Input Ports 17

Event Listeners 17

Event Triggers 17

Properties 17

Prospective use in Easy Reading 17

DateToDouble 18

Output Ports 18

Input Ports 18

Event Listeners 18

Event Triggers 18

Properties 18

Prospective use in Easy Reading 18

JsonParser 19

Output Ports 19

Input Ports 19

Event Listeners 19

Event Triggers 19

Event Triggers that cause an error port output 20

Properties 20

Prospective use in Easy Reading 20

Conclusions 21

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

9

Introduction
User tracking in the Easy Reading project is supposed to track the user’s cognitive stress at the
moment of viewing a document. For this purpose, it is necessary to gather and process sensor
readings in order to draw conclusions on the user’s current cognitive state. The AsTeRICS system
(www.asterics.eu) provides a massively useful tool for this, since developers can resort to a pool of
around 200 plugins for sensors, actuators and data processing. Any functionality not yet supported
by the framework, can easily be added by writing new plugins for the system, which then can be used
in sophisticated models together with all the pre-existent plugins. For data collection and processing
in the scope of the Easy Reading project, a number of additional plugins are needed, which are
described in this deliverable. Every plugin can have data ports for input and output as well as event
listeners, event triggers and a number of properties, which are also described in detail below. Finally,
the prospective use in Easy Reading is explained for every plugin, thus showing why it is needed.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

10

Descriptions of new Plugins
In the following, the newly implemented plugins are described in detail, whereat the title of each
section represents the plugin name as shown in the ACS (AsteRICS Configuration Suite). All port
names, event triggers, event listeners and properties are named equal in this document as in the ACS
as well.

HRVRmssdFromRR
Calculates and outputs the Heart Rate Variability (HRV) in terms of RMSSD (Root Mean Square of
Successive Differences) in milliseconds (ms) based on incoming R-R intervals (also in ms).

A sliding window of the x most recent R-R intervals, x being the property rmssdWindowSize, is used
for the calculation, which is first started as soon as there have been x samples since the last reset (or
model start).

Calculation and collection of samples can be paused and continued via event listener ports. The
output port rmssd only delivers a value, if there is an actual calculation (i.e. currently no pause and
enough samples).

Output Ports
rmssd (double): Provides the calculated Root Mean Square of Successive Differences in ms,
calculated from the collected input port rrInterval’s signals.

Input Ports
rrInterval (double): This port must deliver the R-R interval in ms, i.e. the time interval between the
most significant, the highest, peaks (the R-peaks) of two consecutive QRS' of an ECG
(electrocardiogram).

Event Listeners
resetCalculation: When the event is detected, the plugin discards previous R-R intervals and resets
the counter of intervals used for the calculation. This does not influence running or paused states, i.e.
if the plugin is currently paused, it will stay paused, otherwise there is a recalculation as soon as
there are (again) enough samples.

pauseCalculation: When the event is detected, from now on RMSSD is no longer recalculated and no
value is sent to the output port, but R-R values from the input port continue to be stored (more
recent ones overwrite existing ones due to the sliding window). This can be used in order to wait for
more meaningful R-R samples before the next calculation, respectively further outputs.

continueCalculation: The event must be fired after each pauseCalculation in order to continue
RMSSD calculation and sending the result to the output port again.

pauseComponent: Completely pauses the component's activity, i.e. from now on no RMSSD is
recalculated and sent to the output port. In addition to a pauseCalculation, no more R-R values from
the input port are collected, either.

continueComponent: To be used after pauseComponent in order to collect R-R values from the input
port again (values aren’t reset but progressively overwritten due to the sliding window) and to
continue RMSSD calculation and sending the result to the output port.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

11

Event Triggers
rmssdRecalculated: Triggers whenever an RMSSD calculation has been finished and the current
RMSSD value is available at the output port, i.e. if rmssdWindowSize (property) is 100, it will trigger
first when 100 intervals were received and calculation has finished, then after each further interval
and calculation completion.

Properties
rmssdWindowSize (integer, default: 100): The number of R-R intervals that are used for each RMSSD
calculation, thus the sliding window size. Example: If this is set to 100, the 100 most recent R-R
intervals are taken into consideration and calculation is not started before at least 100 values have
been received at the input port (since the start or a possible reset). A valid value must be > 1,
otherwise it is replaced by the default value.

Prospective use in Easy Reading
RMSSD was found to be a suitable indicator for a user being stressed, in terms of heart rate
measurement and its analysis in the time domain. Thus this is one of the plugins that shall provide
pre-processed input and clues for the reasoner implemented with AsTeRICS.

BlinkChangeDetector
The plugin detects blinks, based on the eyes’ open and closed states which are indicated by events,
which it listens to, and then calculates and outputs blink-related metrics. This plugin does not detect
the eyes’ states itself! Though, in order not to bother the plugin user (the AsTeRICS model developer)
with blink detection, it is sufficient to externally fire events of both eyes’ state currently being open
or closed (no matter whether the state has changed or stayed the same for a while). By the plugin
listening to the events eyesAreOrBecomeOpen and eyesAreOrBecomeClosed is also how the model
developer can individually specify a temporal granularity for blink metrics output, e.g. by external
timers and thresholds, even if the eyes’ state has not changed.

Eyes state: open or closed, always with reference to both eyes simultaneously.

Basic Terminology for Blink States: A blink’s start is defined as both eyes’ state having
simultaneously changed from open to closed, the blink’s end is indicated by both eyes’ being
reopened again. There is an ongoing (a “current”) blink as soon as a blink’s start is detected.

Provided Metrics: The respective “forwarding” event listeners allow recalculating and forwarding
blink rate or blink duration to the output ports on demand. There is a recalculation before every
output.

Further, blink rate and blink duration are recalculated and sent to the output ports when the eyes’
state changes, and, if specified via properties, in a certain interval. If the eyes’ state events are
detected but the state has not changed, there is only a recalculation and output when
propOutputIntervalMs is set and has passed by since the last state-based output.

Implications: Note, that the duration changes while the eyes are closed and is set to 0 milliseconds
when the eyes’ state changes to closed. It is longest at the first eyesAreOrBecomeOpen event in a
row and then set back to 0 milliseconds again till the next eyesAreOrBecomeClosed is detected.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

12

In contrast, the rate changes steadily and is unlikely to ever be 0 Hz again, independently from eyes
being closed or open.

A blink is included in the rate calculation as soon as it has started (i.e. the eyes changed to closed).

Trend Detection: Changes in blink rate and blink duration are analysed at certain eyes’ states
respectively state changes. Then the plugin fires events, if certain thresholds are exceeded
respectively undercut.

The detectable trends (rate increase/decrease and duration prolongation/shortening) work with the
same basic detection algorithm, described below, but using trend-specific properties (see Properties
Section).

Trend Detection Triggers in detail (also see Event Listeners Section): The rate trend is analysed,
when a blink starts or the output interval leads to recalculation. The duration trend is only analysed,
when a blink ends (as then the final duration is clear and as there cannot be a duration analysis while
no blink is going on, either). Trend detection is never done when there is a rate or duration
recalculation and output due to forwarding events.

Basic Trend Detection Algorithm
Blink duration trend detection as well as blink rate trend detection allow certain thresholds. All of
them are optional and specify whether only an increasing, only a decreasing, both or no trends are
detectable.

Each calculated value not undercutting the lower and not exceeding the upper threshold is "within
range".

If the most recently calculated value is passed on to trend detection, three cases are possible:

● The value exceeds the upper threshold which starts the detection algorithm for a currently
ongoing increasing trend.

● The value undercuts the lower threshold which starts the detection algorithm for a currently
ongoing decreasing trend.

● The value is within range which means an ongoing trend is not interrupted but no new trend
can be detected either.

If one of the thresholds is not set, the corresponding case cannot appear but does not influence the
others.

If trend detection into one direction is initiated, an opposite trend is always interrupted.

Whenever starting trend detection into one direction, the corresponding internal counter (above
upper threshold or below lower threshold) is set to 1, then the buffer of earlier calculated values is
walked through backwards, i.e. the more recent values first. Each value within the range does not
affect trend detection, whereas each crossing a threshold in the same direction increases the counter
and in the opposite direction interrupts this turn of trend detection.

The algorithm terminates with firing the corresponding trend detection event, as soon as the counter
exceeds howManyDurationOutliers (for a duration trend) or howManyRateOutliers (for a rate trend),
respectively.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

13

The algorithm terminates with not firing any detection event, if the start of the buffer was reached or
if it was interrupted by a value crossing the opposite threshold.

Output Ports
blinkDurationMs: Outputs the currently recalculated duration in milliseconds (ms) since blink start,
whenever the event forwardCurrentBlinkDuration is detected, eyes’ state changed to closed, or
eyesAreOrBecomeOpen or eyesAreOrBecomeClosed are detected and propOutputIntervalMs passed
by. Outputs 0, if currently the eyes are open (no current blink – indicated by the event
eyesAreOrBecomeOpened).

blinkRateHz: Outputs the current recalculated blink rate (in Hertz) since the plugin’s start, whenever
the event forwardCurrentBlinkRate is detected, or when eyesAreOrBecomeOpen or
eyesAreOrBecomeClosed are detected and propOutputIntervalMs passed by.

It is possible to make the plugin calculate it for a specified observation period, rather than since
model start, this can be set by the property rateObservationPeriodMinutes.

Input Ports
None.

Event Listeners
eyesAreOrBecomeClosed: The event represents the closed-state of the eyes and the listener
handles, whether it indicates that a new blink has just started or eyes have not even been opened in
the meantime (no previous eyesAreOrBecomeOpen since last firing this event). This listener is
responsible for triggering blinkStarts.

Considering propOutputIntervalMs and the current blink state, it recalculates blink duration, blink
rate and initiates trend detection for the blink rate.

eyesAreOrBecomeOpen: The event represents the open-state of the eyes and the listener handles,
whether it indicates that a blink has just ended or eyes have not even been closed before (no
previous eyesAreOrBecomeClosed since last firing this event). This listener is responsible for
triggering blinkEnds.

Considering propOutputIntervalMs and the current blink state, it recalculates blink duration, blink
rate and initiates trend detection for the blink rate and blink duration.

forwardCurrentBlinkDuration: Sends the time that has passed by since blink start to the output port.
0, if currently not blinking (i.e. if eyes are open). It does not do any threshold evaluations (trend
detection) or trigger events!

forwardCurrentBlinkRate: Sends the recalculated blink rate, no matter whether there is currently a
blink (i.e. eyes closed) going on. A possible ongoing blink is already included in the rate calculation. It
does not do any threshold evaluations or trigger events!

Event Triggers
blinkRateIncreased: Triggers when the detection of an increasing blink rate trend was positive.

Also, the properties rateObservationPeriodMinutes and trendsBufferSize are considered and must
therefore be set meaningfully (or be disabled).

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

14

blinkRateDecreased: Triggers when the detection of a decreasing blink rate trend was positive.

Also, the properties rateObservationPeriodMinutes and trendsBufferSize are considered and must
therefore be set meaningfully (or be disabled).

blinkDurationLonger: Triggers when the detection of an increasing blink duration trend was positive.

Also, the property trendsBufferSize is considered and must therefore be set meaningfully (or be
disabled).

blinkDurationShorter: Triggers when the detection of a decreasing blink duration trend was positive.

Also, the property trendsBufferSize is considered and must therefore be set meaningfully (or be
disabled).

blinkStarts: Triggers when a blink’s start is detected during the handling of the
eyesAreOrBecomeClosed event.

blinkEnds: Triggers when a blink’s end is detected during the handling of the eyesAreOrBecomeOpen
event.

Properties
outputIntervalMs (integer, default: -1): Defines how often the blink rate and duration (also 0, if
currently not blinking) are sent to the output ports without the forwarding events being fired. This is
only relevant, if the eyes' state has not changed as at blink end or blink start the output ports always
receive data. This property was introduced in order not to send values too often (e.g. in a 1ms-
interval, if the source for eyes state detection such as a camera plugin would fire events that often)
but to adapt the outputs for visualization in an oscilloscope etc. The unit for the interval is
milliseconds (ms).

Rate is always recalculated and sent to the output port when a blink starts, the duration, if a blink
starts (0 ms) or ends. If those outputs, together with output (recalculation and) forwarding events on
demand is sufficient, and no continuous output is desired, it can be disabled by setting 0 or a
negative value.

It is not possible to turn off the outputs, just described for blink starts or ends.

Used for blink rate trend and blink duration trend detection
trendsBufferSize (integer, default: 10): Defines how many blink rates or blink durations can be
looked back for detecting blink rate and blink duration outliers in trend detection.

This buffer must not be lower than howManyRateOutliers and howManyDurationOutliers properties,
as then the conditions to fire the corresponding events can never be fulfilled! Value 0 disables the
buffer (only meaningful if the needed number of outliers is 1 or disabled). Negative values are invalid
and the default value is used. This must not be confused with rateObservationPeriodMinutes which
restricts the period for which blinks are considered when calculating the current blink rate.

Used for blink duration trend detection only
threshDurationHighMs (integer, default: 500): Defines the blink duration in milliseconds (ms) above
which a blink is detected as an outlier, representing a prolonged blink duration. This upper threshold
can be disabled by setting it to 0 or a negative value.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

15

threshDurationLowMs (integer, default: -1): Defines the blink duration in milliseconds below which
a blink is detected as an outlier, representing a shortened blink duration. This lower threshold can be
disabled by setting it to 0 or a negative value.

howManyDurationOutliers (integer, default: 3): Defines how many blink duration outliers must
occur in one trend direction within the buffered durations for a duration trend to be detected. If a
trend shall be detected, as soon as there is one outlier, it must be set to 1, duration trend detection
can be disabled by setting it to 0 or a negative value. The 1-outlier option especially makes sense
when no buffer is used.

Used for blink rate trend detection only
threshRateLowHz (double, default: -1): Defines below which rate in Hertz (Hz) a blink rate must be,
in order to count towards a decreasing blink rate trend. This lower threshold can be disabled by
setting it to 0 or a negative value.

threshRateHighHz (double, default: 1): Defines above which rate in Hertz (Hz) a blink rate must be,
in order to count towards an increasing blink rate trend. This higher threshold can be disabled by
setting it to 0 or a negative value.

howManyRateOutliers (integer, default: 3): Defines how many blink rate outliers must occur in one
trend direction within the buffered rates for a rate trend to be detected. If a trend shall be detected,
as soon as there is one outlier, it must be set to 1, rate trend detection can be disabled by setting it
to 0 or a negative value. The 1-outlier option especially makes sense when no buffer is used.

rateObservationPeriodMinutes (integer, default: 2): Defines the length of the observation period for
the blink rate in minutes, e.g. if 3, the number of blinks during the last 3 minutes (sliding window) is
considered when calculating the blink rate for this 3-minutes-period.

If this property is used, no memory control is done, thus it is recommended not to use a period
longer than 1 day (1440 minutes). If all blinks and the whole time period since model start (memory
control restricts it to several hours though) shall be considered, the observation period can be
disabled by setting it to 0 or a negative number. Note, that the rate for a natural blinking behavior
gets steadily flatter then, as time passes by and might not be representative for trend detection.

Prospective use in Easy Reading
This plugin already does a little preparatory work for stress detection (in terms of cognitive load
analysis) to help the reasoner, later being implemented with AsTeRICS.

It was found that changes in blink rate and blink duration are significant indicators for the demand of
cognitive load and thus mental stress level. The plugin can get information on eyes’ states (open,
closed) from different sources, such as a cheap standard webcam via the AsTeRICS FacetrackerCLM
plugin. The fact that it only needs the eyes’ state and no previous blink detection or metrics such as
timing measurements but does it itself, makes it highly reusable for different eye tracker sources, i.e.
sensor and other processor plugins.

The options of providing the calculated metrics at specified output ports on demand but also in
regular intervals enables visualization, e.g. with the Oscilloscope plugin, which helps with
interpretation.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

16

It will be a main part of the AsTeRICS reasoner to find and utilize suitable threshold rates and
durations that indicate cognitive load or stress level and further to combine them. This research part
and the later implementation can be perfectly done by the huge amount of properties, interacting
with each other.

StringExtractor
Extracts a subtext from a given input text and forwards it to the output port as soon as extraction
was done based on start and end delimiter strings.

Delimiters must be in the correct order and non-overlapping. In case of several occurrences, always
the first occurrence of the start and the end delimiter are used. The event trigger also fires during
successful extraction, which is also the case for an empty extracted text (also handed to the output
port).

Output Ports
extractedText (string): Represents the subtext extracted from the input text based on delimiter
specifications, i.e. the text between start and end delimiter (can also be an empty string).

Input Ports
inText (string): Provides the input text, from which a subtext shall be extracted and sent to the
output port, based on start and end delimiter specifications.

Event Listeners
None. (Each new inText is checked for the existence of start and end delimiter.)

Event Triggers
textExtracted: Triggers when the end delimiter was detected after the start delimiter (not, if the
order is wrong or one is missing or overlapping, i.e. within the other) and thus a subtext was
extracted and sent to the output port. (An empty string is a valid output that also triggers!)

Properties
startDelimiter (string, default: START): Defines the start string between which and the end string the
text is extracted (no regular expression!)

endDelimiter (string, default: END): Defines the end string between which and the start string the
text is extracted (no regular expression!)

Prospective use in Easy Reading
This is a very important helper plugin for the Easy Reading AsTeRICS model. Tagged/annotated texts
received via the SerialPort plugin, i.e. from a COM port as the receiver in a Bluetooth communication,
can be easily processed to meet the requirements to serve as inputs for other plugins such as
HRVRmssdFromRR (maybe after further data/type conversion steps).

Also tagged error messages from Bluetooth communication can be easily detected, extracted and (if
desired) shown to the Easy Reading users.

Finally, different Bluetooth sources can be annotated and with the help of this plugin their data can
be automatically forwarded to the desired plugins or along certain model paths accordingly.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

17

TimestampWriter
This plugin stores the time in milliseconds (ms) that passed by since the last reset (or start). Outputs
are the (via date string) formatted and numerical milliseconds and also a formatted absolute UNIX
epoch timestamp plus the absolute UNIX timestamp in ms. The time zone of the local system is used!

Output Ports
timePassedMs (double): Milliseconds (ms) since model start or last component reset.

timePassedFormatted (string): Milliseconds since model start or last component reset - formatted as
date string.

timestampUnixMs (double): Unix timestamp in milliseconds (ms).

timestampUnixFormatted (string): Unix timestamp – absolute milliseconds formatted as date string.

Input Ports
None. Milliseconds are either absolute Unix epoch timestamps or relative intervals between events.

Event Listeners
resetStartTimestamp: Resets the start timestamp for calculating the time passed by (the first
timestamp is set at model start).

sendOutputs: Formats and sends outputs, triggers the event timestampFormatted when outputs are
available at the ports.

Event Triggers
timestampFormatted: Triggers when output values (formatted and as milliseconds) are available at
the output ports.

Properties
timestampFormat (string, default: “dd.MM.yyyy-HH:mm:ss.SSS”): Format that must be valid
according to java.text.SimpleDateFormat. It is used for formatting the UNIX timestamp as a date
string. If it is invalid or null, the default date format is used.

diffTimeFormat (string, default: “HH:mm:ss.SSS”): Format that must be valid according to
java.text.SimpleDateFormat but for meaningfulness with only time components. It is used for
formatting passed milliseconds (since start/reset) as a date string. If invalid or null, the default date
format is used.

Important Usage Note: Only the format for time components shall be set, as otherwise the Unix
epoch start date components (01.01.1970 at 00:00:00.000 o’clock) are added. e.g. if 5 seconds have
passed by, using date components the output would look like 01.01.1970-00:00:05.000!

Prospective use in Easy Reading
The plugin is needed for aligning data from different tracking sources (heart rate tracker, eye tracker
or webcam) to each other (i.e., “synchronizing” them). This is necessary as most of the sensor or
communication plugins only provide raw data without a temporal reference, which the later
implemented (AsTeRICS) reasoner could likely not make use of, once data was just sequentially
written into text or csv files.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

18

Usefulness and recoverability of earlier tracked data from user tests (during the early research
phases on generally useful metrics) for later phases such as reasoner implementation would not be
given without also storing the timestamps.

While mathematical methods and visualizations are likely to demand numerical milliseconds-based
timestamps (maybe even relative ones, with regard to the model start), readability of text-based files
will improve when (formatted) absolute date and time are printed.

DateToDouble
Converts a date string to a Unix epoch timestamp in milliseconds, using the default time zone and a
property-defined date format.

Output Ports
timestampUnixMs (double): The converted Unix epoch timestamp in milliseconds.

Input Ports
dateString (string): Date string input to be converted using the date format given by the property.
The event formatInput is also fired internally whenever this input port receives data.

Event Listeners
formatInput: Initiates conversion for the current input date string, triggers dateFormatted when
done.

Event Triggers
dateFormatted: Triggers when an output value is available at the output port.

conversionFailed: Triggers when a conversion attempt failed (might happen if inputs are missing or
do not fit the specified date format).

Properties
dateFormat (string, default: “dd.MM.yyyy-HH:mm:ss.SSS”): The format of the incoming date string.
It is used for conversion into a UNIX timestamp in milliseconds. If invalid (according to
java.text.SimpleDateFormat) or null, the default date format is tried. If conversion fails because of
missing or invalid input conversionFailed is triggered.

Prospective use in Easy Reading
Rather than after the release, this helper plugin is mainly important for the phases of AsTeRICS
model creation and reasoner implementation as it might be the case that in some past user tracking
tests (early research phase) data were persisted with formatted timestamps but are then needed
with numerical milliseconds timestamps for visualizations, alignment with other sources’ tracking
data or mathematical methods.

Without this plugin user tracking tests would need to be redone for some cases which is of course
not representative, if even possible (i.e. it’s not meaningful to let the same users do the same tasks
again as the outcome won’t be the same in a second turn; there won’t be enough time capacities for
redoing several test sessions).

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

19

JsonParser
Receives a JSON (JavaScript Object Notation) string and JSON field name as input and parses it into a
JSON object to send one or more field values (several ones, only if the keepParsedObject is true and
other jsonFieldName input values follow).

Output Ports
jsonFieldValue (string): The value of the JSON field, identified by jsonFieldName, converted to a
string (also "" is valid; an explicit null is converted to "null"). In case of failure, it will be "" and the
error port provides details.

latestReadFieldName (string): The name of the field whenever an attempt of reading a field value
(from the parsed JSON object) has been completed. This output can only be "" if the field name was
""/null/unset, in which case the error output port provides details.

error (string): Receives a value (different from "") whenever an attempt of input parsing or reading
the next field fails. No matter whether it is because of a missing JSON object (as needed for reading a
field but not previously parsed) or missing or invalid input port values. It receives "" (= no error) at
the next successful parse or read. Thus it can be used for showing error messages.

Input Ports
jsonInputString (string): The JSON-formatted string to be converted into a JSON object.

jsonFieldName (string): The key/name of the JSON object's field, of which the value shall be sent to
the output port (most recent name from this port is used, “” causes an error at readNextField event).

keepParsedObject (boolean, default: true): Optional. If connected, it overwrites the
keepParsedObject property.

Event Listeners
For details on which errors are handled and error messages are provided for, see description of the
error output port and of the event triggers that cause an error port output.

parseInput: Parses the most recently received value from the input port jsonInputString into a JSON
object - from which later the desired JSON field (identified by the jsonFieldName input) value is read
and sent to the jsonFieldValue output port.

readNextField: Triggers the next attempt of reading the value of the currently desired JSON field
(identified by jsonFieldName) from an already parsed JSON object.

This event must be used after parseInput (which must be repeated if keepParsedObject is set to
false). parseInput, in combination with a well-matched keepParsedObject property/port, has to
assure that there is already a JSON object from which values can be read when firing readNextField.

rejectParsedObject: Unsets the parsed JSON object for the case that keepParsedObject is true (via
property or overwritten by input port value) or if it is false but no successful reading of any JSON field
has happened (see property description).

Event Triggers
inputParsed: Triggers to indicate that the plugin is done with parsing the JSON input (string) into a
JSON object.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

20

fieldValueAvailable: Triggers when the value of the desired JSON field (specified by the input
jsonFieldName and now identified by the output latestReadFieldName) is available at the
jsonFieldValue output port.

Event Triggers that cause an error port output
fieldValueNotFound: Triggers when trying to read a field but when there is no field with the name
given at the input port within the parsed JSON object (string).

fieldValueInvalidFormat: Triggers when trying to read a field but when there has been an error
returning the value of the desired JSON field. The value has a wrong/an invalid format but is found
(i.e. the key is existent). This is the case whenever a found value cannot be parsed to a string (which
is the output format at the output port jsonFieldValue).

invalidInputFormat: Triggers when trying to parse the JSON input string but when it cannot be
parsed into a JSON object (to later read values from).

missingJsonInput: When trying to parse the JSON input string but when there has been no value at
the input port jsonInputString.

missingFieldName: Triggers when trying to read from an already parsed JSON object but when there
has been no value at the input port jsonFieldName.

Properties
keepParsedObject (boolean, default: true): Specifies, whether to keep the parsed JSON object (the
one resulting from the latest parsing of jsonInputString) until the next value appears at the
jsonInputString port – to read further fields in the meanwhile.

Usage Note: If a field reading attempt fails, a JSON object that has potentially been stored will not be
unset, independently from the value of this property. This is to assure that each JSON input delivers
at least one field value or otherwise is replaced by the next JSON input. In order to force the parsed
JSON object's rejection, rejectParsedObject must be triggered.

Prospective use in Easy Reading
The aim of this plugin is to use it for utilizing web page interaction information or profile information,
provided by the browser plugin (both to be implemented in close cooperation with other Easy
Reading partners). The JsonParser plugin is not in use at the current research and implementation
state but will likely play an important role when implementing the (AsTeRICS) reasoner as it helps
customizing the reasoner, depending on information that can not be received from (only) tracking via
the hardware sensors.

Easy Reading • H2020 • GA 780529
H2020-ICT-2016-2017/H2020-ICT-2017-1
D3.2 – AsTeRICS Plugin Set
25/06/19 • Author: Barbara Wakolbinger, Stefan Parker

21

Conclusions
While some of the plugins described above already deliver concrete clues (like the RMSSD) or already
try to draw conclusions ready for use in reasoning (like blink rate or duration trend detection), others
are “helper-plugins” needed for different purposes and will make sense only in the context of the
reasoner model. Important is to note that reasoner development will start now and is anticipated to
be a complex task that might require additional plugins that could not be anticipated yet and will
have to be written on the way, if deemed necessary. Also adaptations and optimisations of presently
available plugins might become necessary, as development progresses.

